Questão 134 da prova azul do segundo dia do Enem 2020

As moedas despertam o interesse de colecionadores, numismatas e investidores há bastante tempo. Uma moeda de 100% cobre, circulante no período do Brasil Colônia, pode ser bastante valiosa. O elevado valor gera
a necessidade de realização de testes que validem a procedência da moeda, bem como a veracidade de sua composição. Sabendo que a densidade do cobre metálico é próxima de 9 g cm–3, um investidor negocia a aquisição
de um lote de quatro moedas A, B, C e D fabricadas supostamente de 100% cobre e massas 26 g, 27 g, 10g e 36 g, respectivamente. Com o objetivo de testar a densidade das moedas, foi realizado um procedimento em que elas foram sequencialmente inseridas em uma proveta contendo 5 mL de água, conforme
esquematizado.

Com base nos dados obtidos, o investidor adquiriu as moedas

  1. A e B
  2. A e C.
  3. B e C.
  4. B e D.
  5. C e D.

Gabarito da questão

Opção D

Questões correspondentes

93 113 128

Comentário da questão

A questão envolvia o conceito de densidade, onde o candidato deveria através de uma análise gráfica, achar o volume de cada uma das moedas e com a massa, determinar as suas respectivas densidades.

Para determinar o volume de cada moeda, nós precisamos encontrar no gráfico a variação de volume em cada proveta. Essa análise é possível de ser feita porque quando adicionamos um sólido em um líquido, o volume de líquido deslocado é igual ao volume do sólido adicionado.

Volumes:

Moeda A: 2 cm³

Moeda B: 3 cm³ 

Moeda C: 2 cm³ 

Moeda D: 4 cm³

Densidades das moedas:

Moeda A:

d = 26 g/2 cm³ = 13 g/cm³

Moeda B:

d = 27 g/3 cm³ = 9 g/cm³

Moeda C:

d = 10 g/2 cm³ = 5 g/cm³

Moeda D:

d = 36 g/4 cm³ = 9 g/cm³

De posse das densidades bastava comparar com a densidade do cobre para saber as moedas verdadeiramente confeccionadas com esse elemento.

Equipe Descomplica
A melhor equipe de professores do Brasil ;)