Como descobrir a raiz quadrada de um número?

Aprenda a encontrar a raiz quadrada de um número natural, decimal e fracionário!

Como descobrir a raiz quadrada de um número?

O estudo da raiz quadrada é importante para várias áreas de conhecimento da matemática, então porque não termos um tópico só dela?

Neste post vamos explicar tudinho que você precisa saber para encontrar a raiz quadrada de um número!

1. Números primos e fatoração

Para aprendermos a encontrar a raiz quadrada de um número, precisamos relembrar os números primos e a fatoração de um número.

Os números primos são aqueles maiores do que 1 e que possuem apenas dois divisores, o 1 e ele mesmo. Essa lista é infinita, então vamos decorar só os primeiros, ok? São eles:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,...

A fatoração de um número é dada pela divisão dele por números primos, ou seja, vou reescrever um número com apenas multiplicações de números primos.

Exemplo: Fatore o número 192.

192 | 2
96 | 2
48 | 2
24 | 2
12 | 2
6 | 2
3 | 3
1 |

Logo, podemos escrever o 192 = 2.2.2.2.2.2.3 ou 192 = 2 6.3

2. Raiz quadrada de um número natural

Para encontrar a raiz quadrada de um número natural, basta fatorar o número e depois juntar de dois em dois para tirar da raiz, veja o exemplo,

Exemplo: Encontre a √36

36 | 2
18 | 2
9 | 2
3 | 2
1 |

Então, podemos escrever 36 = 2.2.3.3 ou 36 = 22.32, como temos dois 2 e dois 3, logo eles “saem” da raiz, ficando √36 = 2.3 = 6

A raiz é a operação inversa da potenciação, logo para alguns casos simples basta fazer a seguinte pergunta “que número ao quadrado que resulta no valor desta raiz?”.

Veja os casos mais simples: √100 = 10, pois, 102 = 100 √81= 9, pois, 92 = 81 √64= 8, pois, 82 = 64 √49= 7, pois, 72 = 49 √36= 6, pois, 62 = 36 √25= 5, pois, 52 = 25 √16= 4, pois, 42 = 16 √9= 3, pois, 32 = 9 √4= 2, pois, 22 = 4 √1= 1, pois, 12 = 1

Quando conseguimos encontrar um número que responde a essa pergunta dizemos que a raiz é exata, pois não “sobra” nada dentro da raiz.

Exemplo: Encontre a raiz exata de √225

225| 3
75 | 3
25 | 5
5 | 5
1 |

Então, √225 = √32.52 = 3.5 = 15

3. Raiz não exata de um número

O mesmo procedimento é feito para as raízes não exatas, só que agora vai “sobrar” números dentro da raiz, veja:

Exemplos:

  1. Encontre √192

192 | 2
96 | 2
48 | 2
24 | 2
12 | 2
6 | 2
3 | 3
1 |

Logo, podemos escrever √192= √2.2.2.2.2.2.3 = √22.22.22.32 = 2.2.2.√3 = 6√3

Observe que nesse exemplo só os números 2 fizeram pares entre si, o número 3 ficou sozinho, “sobrando” dentro da raiz.

  1. Encontre √245

245 | 5
49 | 7
7 | 7
1 |

Logo, √245 = √5.72 = 7√5

  1. Encontre √221

221 | 13
17 | 17
1 |

Neste último caso, como não temos nenhum número ao quadrado, pois temos um de cada, nada sai da raiz, então não temos uma simplificação para √221.

4. Raiz quadrada de um número fracionário

A raiz quadrada de um número fracionário é feita da mesma forma que para o número natural, só que a resposta será uma fração também, veja:

Exemplo:

  1. Encontre √16/25

Vamos “distribuir” a raiz para o numerador e o denominador.

16/25 = √16/√25

Agora basta encontrar suas raízes.

√16

/√25 = 4/5

  1. Encontre √225/400

225/400 = √225/√400 = 15/20

Sempre precisamos simplificar a fração, então a resposta final será:

15:5

/20:5 = 3/4

225/400 = 3/4

5. Raiz quadrada de um número decimal

Um modo de como podemos resolver a raiz de um número decimal é passar pra fração e repetir o processo anterior, veja:

Exemplo:

  1. Encontre √0,25
√0,25 = √25/100 = √25/√100 = 5:5/10:5 = 1/2 = 0,5
  1. Encontre √0,16
√0,16 = √16/100 = √16/√100 = 4:2/10:2 = 2/5 = 0,4

👉 Se prepare para o Enem e Vestibulares estudando Matemática de graça no Descomplica!

💚

A maior sala de aula direto da sua casa!

Junte-se aos 230 mil alunos que descobriram como melhorar os resultados estudando online! 👉 Clique aqui e saiba como!